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Surface shape resonances and surface plasmon polariton excitations
in bottle-shaped metallic gratings
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We study surface plasmon polariton excitations and surface shape resonances in a lossy metallic grating with
bivalued cavities. The modal formalism is used to solve the diffraction problem for the infinite grating and the
homogeneous problem for a single cavity in a plane surface. Both polarization modes are considered. We
provide curves of reflected efficiency versus wavelength as well as near-field plots. The resonances are iden-
tified as dips in the reflected efficiency, which imply significant power absorptions. Results for various depths
of the cavities and for several angles of incidence are shown, where the different types of resonant behavior can
be appreciated. Particular attention is paid to the changes introduced by the finite conductivity of the metal in
relation to the results obtained for a perfect conductor.
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I. INTRODUCTION sults for a gold grating with numerical computations based
on the transfer matrix formalism, fgp-polarized incident
It is well known that when an infinite metallic grating is light. By varying the depth of the cavities, they analyze the
illuminated byp-polarized light, a surface plasmon polariton evolution of the resonances and show that for shallow corru-
(SPP can be excited along the surfadd. This excitation is ~ 9ations the resonances correspond to the SPP type, and con-
accompanied by a significant power absorpt[@3], and sequently the field is weak in the groove and intense in the
consequently it produces a sudden change in the efficiencgXt€rnal surface. On the other hand, for deeper gratings the
curves of the reflected orders. For a given period and mat gsonances are of SSR type where .the elegtrlc field is mamly
rial of the grating, and for a fixed angle of incidence, theconcentrated in the grooves and is practically zero in all

excitation of a SPP is produced for a particular wavelength a?ther regions.

: . Taking into account that fos-polarized incident light we
which one of the diffracted orders propagates parallel to th%o not h%ve SPP resonances Ft))ut we do have SSgR gratings

surface, and therefore, the electric field near the surface ig, | pa used in many applications based on selective pro-
intensified. This phenomenon is particularly important when,ogses such as polarizers and filters. In particular, bivalued

Fhe corrugations are shallow. As the depth of the grooves 'Brofiles of the grooves can yield more significant intensifica-
increased, another type of resonance can take place: thgns of the field and higher quality resonances than single-
eigenmodes of each cavity can be excited, producing intelyayed profiled4,5], especially fors polarization. The reso-
esting resonant effeCtS, SUCh as f|e|d enhancement inside thgnt Characteristics of Vo|umes SUCh as open Cy“nders had
corrugations[4—6]. Contrary to the SPP excitations, these heen studied by many authof$2—16 mainly for circular
resonances are associated with the particular shape of eagBometries. However, the “bottle” shape of the cavities con-
groove and can be excited sypolarized light[7—9], inde-  sidered in this paper provides us with advantages, such as,
pendently of the period of the grating and the angle of inci-the freedom to vary the depths and widths independently, the
dence. They are usually called surface shape resonancease to manufacture this kind of structures, and the simplic-
(SSRs. Both effects manifest themselves as dips in the reity of the modal formalism used to model the diffraction
flected and absorbed power curves, and they can even mergeoblem.
into one another forming hybrid resonang¢&$).

To identify the SSRs it is important to perform an inde- 1
pendent calculation of the waveguide modes of the cavities 6,
so that the dips are distinguished from other effects that arise vacuum
in infinite gratings. The solution of the homogeneous - ©)
problem—the scattering problem from a single cavity with- k Py
out incident field—gives us a good estimation of the resonant @ h, X’
wavelengthg6,11].
The only experimental evidence of the SSR excitations ’/@)L‘ h,
was recently given by Ljpez-Rioset al. [10], for lamellar
gratings. In Ref[10] the authors compare experimental re- DT
T metal
*Email address: dcs@df.uba.ar FIG. 1. The infinite grating made of bottle-shaped cavities in a
"Email address: rdep@df.uba.ar metallic surface.
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The purpose of this paper is to provide numerical evi-sum of the incoming plane wave and the diffracted field
dence of resonances in deep metallic gratings with multival-
ued corrugations. In a previous pagét, we considered the Canx— i(a _
ideal case of a perfectly conducting material and found in- fa(x,y) =e(®o" Boy)_,.n;m Rpelen V), q=s,p
teresting results that have led us to extend the study to the (1)
real case of a lossy metal. This extension, done by means of
the surface impedance boundary conditi@®@BC) [17], is  where(j denotes the region
presented in this paper. The variety of applications that come )
up from the numerical results also intend to encourage the E.j(x,y) inthes mode

©

design of experiments to measure these resonant properties. fi(xy)= Hj(x,y) inthep mode, 2)
In Sec. Il we outline the modal method applied to the

diffraction problem from an infinite metallic grating with ag=ksinfy, 3

bottle-shaped grooves, using the SIBC. We conssdamd p

polarizations of the incident plane wave. In Sec. Il we pose Bo=k cosby, (4)

the homogeneous problem for a single cavity in a metallic

plane. The method is analogous to that presenté@]ifor a 2w

perfectly conducting surface, so the reader is referred to the an=aot -~ N, ®)

above reference for more details on the procedure. Some of

the results of the numerical computations are shown and dis- K2—a? i kZ>a?

cussed in Sec. IV, where plots of reflected efficiency and Bn= " " (6)
. o - - n . . 2

near field are provided. Finally, concluding remarks are I\/azn—k2 if k?<af,

given in Sec. V. .
=|k|=wl/c=2m/\, i is the imaginary unit, andk ] are
Il. DIEERACTION EROM THE INEINITE GRATING unknpwn complex amplitudes usually referred to as Rayleigh
coefficients.
The grating consists of a periodic array of bottle-shaped To account for the losses in the metallic substrate, we use
one-dimensional cavities on a metallic surface, as shown ithe surface impedance boundary conditi@®IBC) [17],
Fig. 1. The structure is illuminated by a plane wave of wave-which allows us to obtain the diffracted efficiencies and the

length\, whose wave vectdk forms an angled, with they fields inside the cavities without calculating the fields inside
axis, and the axis coincides with the rulings direction. The the metallic region. The expression of the SIBC is
complete problem is solved by separating the basic polariza- R ~ o

tion cases: TE os (electric field in thez direction and T™ Eji=2ZnXH|, (7)

or p (magnetic field in the direction. Both scalar problems

are solved using the modal approach, which provides us witMhere E; andH are the tangential components of the elec-
a simple formulation for the present geometry. Each cavitytric and the magnetic field, respectively,is the normal to
has a wide part that we call “body{region 1) and a narrow the boundary surface and is the surface impedance. For
part referred to as “neck’(region 3. The body has widtle;  highly conducting materialsZ can be approximated by i1/
and heighth,, and the neck has widtty, and heighth, (see (v is the complex refraction indexThis condition is applied
Fig. D). The total depth of the rulings is=h;+h, and the to find the modal eigenfunctions in regions 1 and 2. In these
period of the grating igl. The field in region 3y=0) is the  zones the fields can be expressed as
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TABLE I. Resonant wavelengths («m) for a perfectly con-  These eigenfunctions involve unknown modal amplitudes

ducting rectangular waveguide, fprpolarization. A, al, andbf, which are to be found by matching the
fields at the interfacey=—h, and y=0. The procedure
n h=1 um h=0.8 um h=0.5um followed here is essentially the same as that in R&8]

except for the fact that in the present case we have to match

; é'g (1)"71‘21 8'35 the fields at one more interfacg € —h,). Thus, four sys-
: : : tems of equations are generated for the four unknown vectors
3 0.6 0.48 0.3 (three of modal amplitudes in regions 1 and 2 and the Ray-
4 0.45 0.36 0.225 leigh coefficientsR 9). After substitutions and matrix inver-
sions we get a matrix equation fa® ], and the reflected
- efficiencies €) can be calculated as
f;(x,y)=r§0 Um;owni(y), q=s,p, j=1,2 (8) e9=|RY%B,/Bo, q=s,p. 9

Ill. EIGENMODES OF A METALLIC BOTTLE-SHAPED

q q. i inati igo-
whereU, ;(X) andwy, ;(y) are linear combinations of trigo CAVITY

nometric functions ofk andy, respectively, and depend on
the polarization mode, as denoted by the superscrifsee In this section we calculate the surface shape resonances
the Appendix for the explicit expressions of these functions of a bottle-shaped groove on a metallic plane. An indepen-

-04 -03 -02 -01 0.0 041 02 03 04 05 04 -03 -02 -01 00 01 02 03 04 05
(0) X (um) (@ X (um)

FIG. 3. Near electric field for the same grating of Fig. 2 andolarization:(@) h=1 um and\=0.88567um, (b) h=1 um and\
=0.586 67um, (c) h=0.8 um and\ =0.7055um, (d) h=0.8 um and\ =0.586 67um.
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dent calculation of the resonant wavelengths of the cavities is
essential to characterize the response of the grating, and t
differentiate between surface shape resonances—associat
with geometrical parameters of the cavity—and other types
of anomalies. A good estimation of the SSR wavelengths car
be obtained by the solution of the homogeneous problem
i.e., the scattering problem without incident field. Maradudin
et al. [11] solved it for a rectangular cavity on a perfectly
conducting plane.

The procedure followed in the present paper for lossy
metals is the same as the one we used for a perfectly con
ducting structure of the same shg@. Even though inter-
esting results were reported [i6], the perfect conductor is
still an idealization and cannot account for effects such as
selective absorption. Consequently, here we use the mode
method in conjunction with the SIBC to solve the homoge- _
neous problem of a single bottle-shaped one-dimensiona 04 03 02 -01 00 01 02 03 04 05
cavity on a lossy metallic plane. The field in region 3 is thus (a)
expressed as

fg(x,y):j RYa)e (@A) da, (10)

whereR 9(«a) is an unknown function, ang?=k?— 2. In
regions 1 and 2 the modal expansions have the same expre _
sions as in the periodic grating case given in the Appendix, &
since the SIBC is also applied here. When matching the >
fields aty=—h, and aty=0, we obtainx-dependent equa- '
tions. After projection in appropriate bases of functions and
several substitutions, we obtain a homogeneous matrix eque
tion for the unknown modal amplitudes of the body of the
cavity, i.e., forA . This system has a nonzero solution if the
determinant of the complex matrix vanishes. The sets of pa:
rameters §,c4,C»,h,h,,v) that make the determinant van- T 04 08 02 -01 00 01 02 03 04 05

ish correspond to resonant conditions, and consequently tip) X (um)

surface shape resonances of the cavity. Since the matrix is

complex, the roots of the determinant are also complex: the FIG. 5. Near electric field for the same grating of Fig. 4 and
real part is related to the resonant parameter and the imagpolarization:(a) h=0.4 um and\ =0.509 33um, (b) h=0.5 um
nary part is associated with the quality of the resonance. Thand\ =0.557 33um.
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TABLE II. Resonant wavelengths (um) for a gold grating of  appear almost at the same positions for the different depths
periodd=1 um, corresponding to SPP excitations. considered, but some of them are shifted. It could be ex-
pected that the anomalies related to the appearance/

n 0o=10° 0o=20° 0o=40° disappearance of a propagating ori&®B do not depend on

1 0.847 0.695 0.501 the depth of the cavities but only on the period of the grating

2 0.492 0.209 0.190 and the incidence angle. On the other hand, the minima as-
-1 1.182 1.349 1.647 sociated with the particular shape of the cavitiESR de-
-2 0.616 0.690 0.832 pend on their geometrical parameters, particularly the depth,
-3 0.463 0.497 0.573 so the positions of these dips are expected to vary from one

curve to the other. Consequently, we can identify two differ-
ent kinds of resonances: SPP and SSR. Since the neck of the
. P . cavities is narrow, we can compare the resonant wavelengths
peaks in a plot ofdef M ]|~ versus wavelength provide us  th L .
with a good estimate of the resonant wavelengths of the ca? the cgvny with those caIcuIatgd analytllcally for a perfectly
ity [19,20,11,5. conducting recta_ngular waveg_u_lde. In this case, th(_a resonant
wavelengths satisfy the conditidth;=nm, wheren is an
integer. These values are listed in Table | for the dejths
IV. RESULTS AND DISCUSSION qonsidered in Fig. 2._ Comparing t.hes_e values with the posi-
tions of the dips in Fig. 2, and taking into account that these
The examples below show the influence of the differentwavelengths depend on the depth of the cavity, we can easily
types of resonances—SPP and SSR—in the power reflectédentify which of the resonant wavelengths correspond to
from an infinite grating. The particular characteristics of theSSR. The wavelengths listed in Table | for the rectangular
near field at resonant wavelengths and the influence of th@aveguide are slightly greater than those of Fig. 2, and this

finite conductivity of the gratings are also studied. is in agreement with the results obtained4r for a bivalued
In Fig. 2 we plot the specular efficiency from an infinite perfectly conducting cavity with circular cross section.
perfectly conducting grating of periad=1 um with bottle- To confirm the nature of the different dips in Fig. 2, we

shaped grooves of widtltg = 0.35um andc,=0.1 um. The  have calculated the near field in a single period of the grating
grating is illuminated by g@-polarized plane wave impinging for the corresponding wavelengths, and this is shown as con-
with an anglef,=10°. The three curves correspond to dif- tour plots in Fig. 3. The black respresents the minimum in-
ferent depths of the cavities, but in all cases the rdtigh tensity and the white represents the maximum intensity. For
=0.9, is maintained. Fax=1.174, the only propagating or- h=1 um, we plot the near electric field for=0.885 67um

der is the specular order and therefore, the total reflectedFig. 3(a)], and forA =0.586 67um [Fig. 3(b)]. We observe
power goes in that direction and all fluctuations are forbid-that in Fig. 3a) the electric field has penetrated in the cavity,
den. Thus, we analyze the response of the grating for smallevhereas in Fig. ®) the field is intensified on the surface.
wavelengths. In the range of considered in Fig. 2, the The field distribution in both cases suggests that the first case
number of propagating orders goes from one to five. Let ugorresponds to a SSR and the second corresponds to a SPP
note that more diffracted orders contribute to the total reexcitation. A similar result was obtained by’ phez-Rios
flected power for small values of the wavelength than foret al. in [10] for a rectangular grating. Comparing Fig$c)3
higher values. The first significant feature to notice in Fig. 2and 3d), which correspond tb= 0.8 um, the same analysis

is that each curve has several minima. Some of these digsan be made. In this case it is also clear that the dip at

1.0 .

0.9 r
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2 08 FIG. 6. Total reflected efficiency versus
g 05 [ wavelength for a gold grating of periat=1 um,
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=0.7055um [Fig. 3(c)] corresponds to a SSR and the dip at=0.552 um (for h=0.5), and it can be observed that these
A=0.58667um [Fig. 3(d)] corresponds to a SPP. values coincide almost exactly with the positions of the dips
In Fig. 4 we plot the specular efficiency versus the inci-in Fig. 4. These dips are more localized than those in Fig. 2
dent wavelength for the same grating considered in Fig. 2for p polarization, as it was already observed @.
but now illuminated by ars-polarized incident wave. The To verify that the minima in Fig. 4 can be identified as
different curves correspond to different values of the depthSSR, we show in Fig. 5 contour plots of the near electric
h=0.4 um and 0.5um. In the range oh considered, only field for these cases. Fig(& corresponds th=0.4 um and
one dip for eacth is observed. Since the position of the dip A=0.509 33um, and Fig. Bb) corresponds tdv=0.5 um
depends on the depth of the cavity, we associate this effeeind A =0.557 33um. In both cases the field is concentrated
with a surface shape resonance. The reasons that account foside the cavity, with the highest intensity in its center. As it
the presence of a single dip in each curve are the followingwas shown in the previous example, this is a characteristic of
On the one hand, there is no possibility of exciting a surfaceSSR.
plasmon along the surface undsipolarized illumination, Having considered the ideal case of a perfectly conduct-
and therefore all the anomalies related to SPPs are ndahg grating, we now study the more interesting and realistic
present in this case. On the other hand, the wavelengths asase of lossy metals. The losses are included in the analysis
sociated with surface shape resonances are now differeapplying the SIBC 17]. The refraction index at different
from those corresponding tp polarization. In the limiting wavelengths in the range under consideration was taken from
case of a rectangular waveguide, the resonant wavelengtiief. [21], and then the curve(\) was estimated by fitting
for the first modes are found by imposing the conditionthese values with a second order polynomial. In the follow-
v.:h=nmr, instead of that used for the case(see the Ap- ing figures, we consider a gold grating with bottle-shaped
pendix for the definition ok ;7). For the range ol under cavities. To find the wavelengths at which it is possible to
consideration, the only resonant values resulting from thexcite a SPP for the grating studied, we solved the implicit
waveguide condition are.=0.5 um (for h=0.4) and\ equation
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FIG. 8. Near electric field for the same grating of Fig. 6 gmgbolarization: (a) 6,=10° andA=0.604 um, (b) ,=10° andX\
=0.988um, (c) 6,=20° and\=0.686 um, (d) 6,=20° and\=0.98 um.

y(\)? d remain almost fixed when changing the angle of incidence
+ \/ ———=—sinf,
1+ v(\)?

——\=0, (1)  are supposed to correspond to SSR since geometrical param-
n eters are much more relevant for their excitation than inci-
dent conditions. However, a slight shift is also expected be-
and some of the solutions of E(L1) are listed in Table Il.  cause at oblique incidence the projection of the wavelength
In Fig. 6 we plot the total reflected efficiency as a functionin the (x,z) plane increases with the angle, and consequently
of the incident wavelength, for a gold grating with cavities of the resonances occur for slightly smaller wavelengths. This
€;=0.35um,c,=0.1um,h=0.5um, h;/h=0.9,d=1 um  behavior was already observed[B]. On the other hand, the
and incidentp polarization, for three incidence angles: 10°, minima produced by a SPP excitation are expected to move
20° and 40°. Notice that for a real metal, the minima repre-with the angle of incidence, as is understood from @d).
sent power absorption, forbidden in the previous case of a To confirm that a certain dip corresponds to a SSR, it is
perfect conductor. The dips in the solid line of Fig. 6 areimportant to solve the homogeneous problem. This calcula-
moved with respect to those corresponding to the perfedion was done here for a bottle-shaped groove in a lossy
conductor(dashed line in Fig. 2 As expected, the SPP ex- metallic plane surfacésee Sec. I). A similar problem was
citations(see Table I and the SSR now take place at dif- already solved for the perfect conductor cdsg¢ As ex-
ferent wavelengths. Comparing the three curves in Fig. 6, welained in Sec. Ill, the last step of the solution process is to
can notice that some of the dips remain at almost the samiénd the roots of the determinant of a complex matrix. An-
positions, whereas some others move. Those minima thaither possibility to identify the resonant wavelengths of the
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cavity is to plot |det(M)| 2 versus wavelength, and the
peaks in this curve represent resonant conditions of the struc
ture[19,20,11,6. The number of modal terms considered in
the calculation is varied to identify each peak with a particu-
lar resonant mode. For instance, in Figa)7we consider

only one modal term in the field expansions inside the cavity
(gold surface with a groove af;=0.35 um, c,=0.1 um,
h=0.5 um, h;=0.%, p-polarization case This implies that

the two peaks correspond to the lower symmetric modes 0175;
the groove. For Fig. (b) two modes had been included inthe =
calculation, and it can be noted that in addition to the
maxima observed in Fig.(@ there are new peaks that can be
associated with higher order modes. Since the surface shar
resonances do not depend on the incidence conditions, th
peaks in Fig. 7 are associated with resonant wavelengths, fa
any angle of incidence. Particularly, if we compare this curve o ,
with Fig. 6, it can be noticed that two of the dips that do not " 04 03 -02 01 00 04 02 03 04 05
move with the angle of incidencex&0.55 um and A (a)
~0.98 um) appear at the wavelengths of the peaks in Fig.
7(a). There is another dip at~0.83 um, which in principle

can be associated with one of the peaks in Fig).7The near U4
electric field for the case of Fig. 6 is shown in Fig. 8, for 03
several wavelengths corresponding to minima in the reflectec

efficiency: §,=10° and\ =0.604 um [Fig. 8a)], 6,=10° 92
and A =0.988 um [Fig. 8b)], 6,=20° and\=0.686 um 01
[Fig. 8c)], and 6,=20° and\=0.980 um [Fig. 8d)]. As .
observed in Fig. 3 for the perfectly conducting surface, in the & °
case of surface shape resonandégs. §b) and 8d)], the > 04
field enters inside the cavity, where the maximum intensity is

found. On the other hand, for the SPP excitatifffigs. §a) 02
and &c)], the field is more intense on the surface, and 4
slightly penetrates into the cavity. However, there are dips in

Fig. 6 that can hardly be identified with one of the two types 04

of resonances, as, for example, the dips\at0.55. Even 05

though these dips seem to be associated with a SSR, the ne 04 -03 02 -01 00 01 02 03 04 05

field distribution suggests that this is a hybrid mode. In Fig. (b) X (um)

9 we show the near field for the case in Fig. 6, #ige=10°

and A =0.558 um [Fig. 9a)] and for §,=40° and\=0.55 FIG. 9. Near electric field for the same grating of Fig. 6 and

pm [Fig. Ab)]. In this type of resonance the near field ex- polarization: (8 6,=10° and\=0.558 um, (b) #,=40° and\
hibits a character intermediate between the typical behaviors 0.55 um.
corresponding to SPP and SSR, as shown in Fig. 8. These
hybrid resonances had already been observed for lamellar
gratings[10]. V. CONCLUSION

In the last example we consider thgoolarization mode.
In Fig. 10@ we plot the total reflected efficiency for a gold In this paper we have solved the diffraction problem from
grating with cavities of widths;=0.35 um, c,=0.1 um,  an infinite grating with bottle-shaped cavities on a metallic
h=0.5um, h;/h=0.9,d=1 um, andf,=10°. Comparing surface, fors andp polarizations. We believe that the most
this curve with that for the perfect conduct@ig. 4), it can  interesting contribution of this paper is the introduction of
be noticed that the dip is now shifted and less localized. Bothhe lossy characterisitic of a real metal, and the effects that
changes are associated with the finite conductivity of thehis property produces in the behavior of the electromagnetic
metal: the SSR depends not only on the geometrical paramield. We used the modal approach, which is particularly
eters but also on the material of the structure, as is confirmesuitable for this geometry, and the surface impedance bound-
in Fig. 10b) where we plo{det(M)| 2 for a single cavity in  ary condition to take into account the losses in the metal. We
the s mode. The location of the peak coincides with the po-also solved the homogeneous problem of a single cavity in a
sition of the dip in Fig. 1(8). In Fig. 10c), the SSR charac- plane metallic surface using the same technique. The results
ter of this resonance is confirmed, since for this wavelengtishown place particular emphasis on the excitation of surface
A =0.6458 um, most of the intensity is concentrated inside plasmon polaritons and surface shape resonances in this type
the cavity. of bivalued structures. We verified the different nature of the
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resonances that appear as dips in the reflected efficiency, lpetween them can be controlled by changing the angle of
calculating the eigenmodes of a single cavity and also byncidence and/or the depth of the cavities. A comparison be-
analyzing the near field distribution. The existence of hybridtween the results obtained for a perfectly conducting surface
modes was also addressed for the gratings studied. The rand for a lossy metal was also provided, and the differences
sults suggest that the resonant wavelenghts and the proximibetween them were discussed.

046608-9



DIANA C. SKIGIN AND RICARDO A. DEPINE

ACKNOWLEDGMENTS

This work was supported by Agencia para la Promocio
Cienffica y Tecnolgica(APCYT) under Grant No. BID802/
OC-AR-PICT03-04457 and by Universidad de Buenos Aires

(UBA).

APPENDIX: EXPLICIT EXPRESSIONS OF THE MODAL
FUNCTIONS

Um0 =sinlug, ;(x=x))1+ 7°ug, ; cofup, ; (x—x;)1,

=12, (A1)

p
UR,(x)= nTSirfUﬁ],j(X_xj)]+C°§tupm,i(x_xi)]’

Um'j
=12, (A2)
wih () =ATTKf cosoly) +sinof )1, a=s.p,
(A3)
wl (y)=a% cogvdy)+bdsinvdy), q=s.p,
(A4)
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wherex;=—(c1—C)/2, X,=0, (v ;)*=k*—(u3,)?,

q i ZIk=ilvk if g=s
T zki=kivi i q=p, (AS)
s_ nsvﬁw,lcos(vrsn,lh)+sin(vrsn,1h) , (A6)
COS(vﬁmlh) — nsvﬁq’lsln(vrsnvlh)
o 7P sin(vf, 1h) + v, 1 COSVf, 1) (A7)

" 9P cogvl h) v sinwh h)

and u‘ﬂn,j are determined by an eigenvalues equation for each
polarization:

27°US .
tar(ufn:icj): S n;] !
(m um,j) -1
(A8)
277pup .
tan(uf, ;c;) m)

(U )2— ()
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